教授

杨守萍

发布人:     发布日期: 2015-12-28    浏览次数:


 

最高学位:博士

 

职称:教授,博导

办公地址:理科南楼F408

办公电话:025-84399529

电子邮箱:spyung@126.com, spyang@njau.edu.cn


研究方向

大豆遗传育种侧重育性生物学、杂种优势利用、功能基因组学等。

教育经历

1990.09–1996.07 ylg8099官方网站作物遗传育种专业硕-博连读,获博士学位

指导教师马育华教授盖钧镒教授

1986.09–1990.07 安徽农业技术师范学院农学专业本科,获学士学位

 

工作经历

2010.12–至今     ylg8099官方网站教授

1999.01–2010.11  ylg8099官方网站副教授

1996.12–1998.12  ylg8099官方网站农学系,讲师

1996.10–1996.11  ylg8099官方网站农学系,助教

2019.04–2019.05 美国农业部-农业研究局(USDA-ARS),贝尔茨维尔农业研

究中心(BARC),大豆基因组和改良实验室,高级访问学者

 

讲授课程

《生物统计学》《生物统计与试验设计I《生物统计与试验设计II》

 

承担项目

1、国家重点研发计划农业生物重要性状形成与环境适应性基础研究 专项 农作物育性与生殖发育分子调控机制 项目子课题(编号2022YFF1003504-007,80万执行期限2022.12-2027.11

2、国家种子实验室企业联合“揭榜挂帅项目“大数据智能育种”子项目“大豆大数据智能育种技术的研究与应用”(150万执行期限2023.01-2025.12

3、国家重点研发计划七大农作物育种专项大豆杂种优势利用技术与强优势杂交种创制”项目“长江中下游大豆杂种优势利用技术与强优势杂交种创制”课题(编号2016YFD0101504,975万,执行期限2016.07-2021.06)

4、国家863计划重点项目“强优势大豆杂交种的创制与应用”子课题

      编号2011AA10A105,575万,执行期限2011.01-2015.12)

5、国家863计划重点项目“强优势大豆杂交种的创制与应用”子课题

      (编号2009AA101106288万,执行期限2009.01-2010.12

6、国家转基因重大专项“高产养分高效利用转基因大豆新品种培育”子课题

   (编号2016ZX08004-005,184.25万,执行期限2016.01-2020.12)

7、国家转基因重大专项“高产养分高效利用转基因大豆新品种培育”子课题

   (编号2014ZX08004-005,73.89万,执行期限2014.01-2015.12

8、国家转基因重大专项“高产养分高效利用转基因大豆新品种培育”子课题

   (编号2013ZX08004-005,43.7万,执行期限2013.01-2013.12

9、国家转基因重大专项“高产养分高效利用转基因大豆新品种培育”子课题

   (编号2011ZX08004-005,89万,执行期限2011.07-2012.12)

10、国家转基因重大专项“高产养分高效利用转基因大豆新品种培育”子课题(编号2008ZX08004-005,110万,执行期限2008.07-2010.12

11国家973计划项目“大豆家系品种优异亲本形成的遗传解析与利用”课题(编号2011CB109301,467万,执行期限2011.01-2015.08)

12、国家转基因重大专项“重要性状基因克隆及功能验证”子课题

      (编号2008ZX08009-003,60万,执行期限2008.07-2010.12


近期发表论文

1The miR156b–GmSPL2b module mediates male fertility regulation of cytoplasmic male sterility-based restorer line under high-temperature stress in soybean. Plant Biotechnology Journal, 2023, 21: 1542-1559

2Confirmation of GmPPR576 as a fertility restorer gene of cytoplasmic male sterility in soybean. Journal of Experimental Botany, 2021, 72 : 7729-7742

3Genotype imputation for soybean nested association mapping population to

improve precision of QTL detection. Theoretical and Applied Genetics, 2022, https://doi.org/10.1007/s00122-022-04070-7

4A small RNA of miR2119b from soybean CMS line acts as a negative regulator of male fertility in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2021, 167: 210-221

5Comparative transcriptomics analysis and functional study reveal important role of high temperature stress response gene GmHSFA2 during flower bud development of CMS-based F1 in soybean. Frontiers in Plant Science, 2020, 11: 600217

6Gm6PGDH1, a cytosolic 6-phosphogluconate dehydrogenase, enhanced tolerance to phosphate starvation by improving root system development and modifying the antioxidant system in soybean. Frontiers in Plant Science, 2021, 12:704983

7Transcription factor GmWRKY46 enhanced phosphate starvation tolerance and root development in transgenic plants. Frontiers in Plant Science, 2021, 12 : 700651

8GmWRKY45 enhances tolerance to phosphate starvation and salt stress, and changes fertility in transgenic Arabidopsis. Frontiers in Plant Science, 2020, 10:1714

9Heat-responsive miRNAs participate in the regulation of male fertility stability in soybean CMS-based F1 under high temperature stress. International Journal of Molecular Sciences, 2021, 22 : 2446

10Transcriptome Analysis Reveals the Genes Related to Pollen Abortion in a Cytoplasmic Male-Sterile Soybean (Glycine max (L.) Merr.). International Journal of Molecular Sciences, 2022, 23: 12227

11Genome-wide identification and characterization of TALE superfamily genes in soybean(Glycine max L.). International Journal of Molecular Sciences, 2021, 22 : 4117

12Metabolomics studies on cytoplasmic male sterility during flower bud development in soybean. International Journal of Molecular Sciences, 2019, 20:2869

13Genome-wide identification of PME genes, evolution and expression analyses in soybean (Glycine max L.). BMC Plant Biology, 2021, 21 : 578

14Genome-wide identification and characterization of GRAS genes in soybean (Glycine max). BMC Plant Biology, 2020, 20:415

15Overexpression of GmNF-YA14 produced multiple phenotypes in soybean. Environmental and Experimental Botany, 2023, 210: 105316

16Comparative analysis of mitochondrial genomes of soybean cytoplasmic male-sterile lines and their maintainer lines. Functional & Integrative Genomics, 2021, 21: 43-57

17miR156b from soybean CMS line modulates floral organ development. Journal of Plant Biology, 2020, 63: 141-153

18Exploration of miRNA-mediated fertility regulation network of cytoplasmic male sterility during flower bud development in soybean. 3 Biotech, 2019, 9: 22

19Bacterial artificial chromosome clones randomly selected for sequencing reveal genomic differences between soybean cultivars. Crop & Pasture Science201869: 131-141

20Construction and characterization of the infectious cDNA clone of the prevalent Chinese strain SC3 of soybean mosaic virus. Phytopathology Research, 2023, 5: 9

21Comparative analysis of circular RNAs between soybean cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B by high-throughput sequencing. BMC Genomics, 2018, 19: 663

22Genome-wide analysis of DNA methylation to identify genes and pathways associated with male sterility in soybean. Molecular Breeding, 2018, 38: 118

23Genome-wide comparative analysis of DNA methylation between soybean cytoplasmic male-sterile line NJCMS5A and its maintainer NJCMS5B. BMC Genomics, 2017, 18: 596

24Key biological factors related to outcrossing- productivity of cytoplasmic-nuclear male-sterile lines in soybean [Glycine max (L.) Merr.]. Euphytica, 2017, 213: 266

25Identification of miRNAs and their targets by high-throughput sequencing and degradome analysis in cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B of soybean. BMC Genomics, 2016, 17: 24

26Differential proteomics analysis to identify proteins and pathways associated with male sterility of soybean using iTRAQ-based strategy. Journal of Proteomics, 2016, 138: 72–82

27Soybean SPX1 is an important component of the response to phosphate deficiency for phosphorus homeostasis. Plant Science, 2016, 248: 82-91