教授

姚霞

发布人: 姚霞    发布日期: 2020-09-14    浏览次数:


姚   霞,教授,博导


 

   话:+86-25-84396565

办公地点:生科楼A4009

电子邮箱:yaoxia@njau.edu.cn                                                              


研究领域:农情遥感监测

研究兴趣:基于高光谱/日光诱导叶绿素荧光/激光雷达的星--地作物生长监测;作物表型高通量获取

个人简介:

2009年获ylg8099官方网站农业信息学博士学位,2017年在美国夏威夷大学地理系做访问学者。主要围绕农情遥感监测理论与技术开展科研与教学工作。近五年来先后主持国家自然科学基金(3项)及国家863计划子课题、国家科技支撑计划子课题等省部级项目11项,已发表核心期刊论文60多篇,合作出版专著(教材)6部;授权国家发明专利13件;登记国家计算机软件著作权6项。指导研究生18名(其中1名获省优秀硕士论文)。获2014年江苏省科技进步一等奖和2015年国家科技进步二等奖(排名第4)。获2016年江苏省高校青蓝工程中青年学术带头人称号,2021年江苏省第六期“333高层次人才培养工程”。

 

现任智慧农业系主任,配合学院建设智慧农业本科-硕士-博士专业和学科;作为秘书,配合学科负责人建设农业信息学省优势学科一期和二期项目;协助建设国家信息农业工程技术中心,参加现代作物生产协同创新中心的工作。任《Remote Sensing》编委,国际地球科学与遥感分会和江苏省遥感和地理信息系统成员。任国际期刊Remote Sensing of Environment, Remote Sensing, Field Crop Research, ISPRS Journal of Photogrammetry and Remote Sensing, International Journal of Applied Earth Observation and Geoinformation的审稿人。

 

欢迎具有遥感与GIS、计算机或测绘工程等背景的硕/博士研究生和博士后加入,尤其欢迎对高/多光谱影像、日光诱导叶绿素荧光、LiDAR、卫星影像、图像处理等感兴趣的同仁加盟!优先考虑积极向上、刻苦钻研、勇于探索的同学,男女不限!

 

近期主要成果

专著和教材

1.        专著:作物生长光谱监测. 科学出版社. 2020.(主编)

2.        专著: Hyperspectral remote sensing of leaf nitrogen concentration in cereal crops. Cheng, T., Zhu, Y., Li, D., Yao, X, & Zhou, K. (2018). In P. S. Thenkabail, J. Lyon, & A. Huete (Eds.), Hyperspectral Remote Sensing of Vegetation, Second Edition, Four Volume Set, Volume 2. Boca Raton, FL: CRC Press.

3.        专著:Estimating leaf nitrogen concentration of cereal crops with hyperspectral data. In: Prasad ST, John GL, Alfredo H. (eds.) Hyperspectral Remote Sensing of Vegetation. CRC Press, FL, USA. 2011.187-206.(参编)

4.        专著:物联网与食品质量安全. 科学出版社. 2014(参编)。

5.        专著:数字农作技术. 科学出版社. 2008.(参编)

6.        教材:农业信息化技术导论.中国农业科学技术出版社. 2009.(参编)

主要论文(仅列出第一作者和通讯作者文章)

1.        Khan, I.H., Liu, H., Li, W., Cao, A., Wang, X., Liu, H., Cheng, T., Tian, Y., Zhu, Y., Cao, W., Yao, X. Early Detection of Powdery Mildew Disease and Accurate Quantification of Its Severity Using Hyperspectral Images in Wheat. Remote Sens. 2021, 13, 3612. https://doi.org/10.3390/rs13183612

2.        Jia, M., Colombo, R., Rossini, M., Celesti, M., Zhu, J., Cogliati, S., Cheng, T., Tian, Y., Zhu, Y., Cao, W., Yao, X*. Remote estimation of nitrogen content and photosynthetic nitrogen use efficiency in wheat leaf using sun-induced chlorophyll fluorescence at the leaf and canopy scales. European Journal of Agronomy. 2021.12:14.

3.        Jiang, J.; Zhu, J.; Wang, X.; Cheng, T.; Tian, Y.; Zhu, Y.; Cao, W.; Yao, X. Estimating the Leaf Nitrogen Content with a New Feature Extracted from the Ultra-High Spectral and Spatial Resolution Images in Wheat. Remote Sens. 2021, 13, 739. https://doi.org/10.3390/rs13040739

4.        Fang Y, Qiu X, Guo T, Wang Y, Cheng T, Zhu Y, Chen Q, Cao W, Yao X*, Niu Q, Hu Y, Gui L. An automatic method for counting wheat tiller number in the field with terrestrial LiDAR. Plant Methods. 2020, 16(1): 132.

5.        Zhou M, Ma X, Wang K, Cheng T, Tian Y, Wang J, Zhu Y, Hu Y, Niu Q, Gui L, Yue C, Yao X*. Detection of phenology using an improved shape model on time-series vegetation index in wheat. Computers and Electronics in Agriculture. 2020, 173: 105398

6.        Jia M, Li D, Colombo R, Wang Y, Wang X, Cheng T, Zhu Y, Yao X*, Xu C, Ouer G, Li H, Zhang C. Quantifying chlorophyll fluorescence parameters from hyperspectral reflectance at the leaf scale under various nitrogen treatment regimes in winter wheat. Remote Sensing. 2019, 11: 2838.

7.        Jia M, Li W, Wang K, Zhou C, Cheng T, Tian Y, Zhu Y, Cao W, Yao X*. A newly developed method to extract the optimal hyperspectral feature for monitoring leaf biomass in wheat. Computers and Electronics in Agriculture. 2019, 165: 104942.

8.        Li W, Jiang J, Guo T, Zhou M, Tang Y, Wang Y, Zhang Y, Cheng T, Zhu Y, Cao W, Yao X*. Generating Red-Edge images at 3 M spatial resolution by fusing Sentinel-2 and Planet satellite products. Remote Sensing. 2019, 11(12):1422.

9.        Jiang J, Cai W, Zheng H, Cheng T, Tian Y, Zhu Y, Ehsani R, Hu Y, Niu Q, Gui L, Yao X*. Using digital cameras on an unmanned aerial vehicle to derive optimum color vegetation indices for leaf nitrogen concentration monitoring in winter wheat. Remote Sensing. 2019, 11: 2667.

10.    Jiang J, Zheng H, Ji X, Cheng T, Tian Y, Zhu Y, Cao W, Ehsani R, Yao X*. Analysis and evaluation of the image preprocessing process of a six-band multispectral camera mounted on an unmanned aerial vehicle for winter wheat monitoring. Sensors. 2019, 19, 747.

11.    Guo T, Fang Y, Cheng T, Tian Y, Zhu Y, Chen Q, Qiu X, Yao X*. Detection of wheat height using optimized multi-scan mode of LiDAR during the entire growth stages. Computers and Electronics in Agriculture. 2019, 165: 104959.

12.    Cao Z, Yao X, Liu H, Liu B, Cheng T, Tian Y, Cao W, Zhu Y*. Comparison of the abilities of vegetation indices and photosynthetic parameters to detect heat stress in wheat. Agricultural and Forest Meteorology. 2019. 65:121-136.

13.    Zheng H, Li W, Jiang J, Liu Y, Cheng T, Tian Y, Zhu Y, Cao W, Zhang Y, Yao X *. A comparative assessment of different modeling algorithms for estimating leaf nitrogen content in winter wheat using multispectral images from an unmanned aerial vehicle. Remote Sensing. 2018. 10, 2026.

14.    Jia M, Zhu J, Ma C, Alonso L, Li D, Cheng T, Tian Y, Zhu Y, Yao X*, Cao W*. Difference and potential of the upward and downward sun-induced chlorophyll fluorescence on detecting leaf nitrogen concentration in wheat. Remote Sensing. 2018, 10(8):1315.

15.    Yao X, Si HY, Cheng T, Liu Y, Jia M, Tian YC, Chen CY, Liu SY, Chen Q, Zhu Y*. Spectroscopic estimation of leaf dry weight per ground area using vegetation indices and continuous wavelet analysis in wheat. Frontiers in Plant Science. 2018.01,360

16.    Yao X, Wang N, Liu Y, Cheng T, Tian YC,Chen Q , Zhu Y. Accurate Estimation of LAI with Multispectral Imagery on Unmanned Aerial Vehicle (UAV) in Wheat. Remote sensing, 2017,9,1304

17.    Cao Z, Cheng T, Ma X, Tian Y, Zhu Y, Yao X*, Chen Q, Liu S, Guo Z, Zhen Q. A new three-band spectral index for mitigating the saturation in the estimation of leaf area index in wheat. International Journal of Remote Sensing. 2017, 38(13): 3865-3885.

18.    Yao X, Huang Y, Shang G, Zhou C, Cheng T, Tian YC, Cao WX, Zhu Y. Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration. Remote Sensing. 2015.7: 14939-14966.

19.    Yao X, Huang Y, Shang G, Zhou C, Cheng T, Tian YC, Cao WX, Zhu Y. Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration. Remote Sensing, 2015, 7: 14939-14966.

20.    Yao X, Ren H, Cao ZH, Tian YC, Cao WX, Zhu Y, Chen T. Monitoring leaf nitrogen content in wheat with canopy hyperspectrum as influenced by soil background. International Journal of Applied Earth Observation and Geoinformation. 2014. 32 , 114-124

21.    Yao X, Jia WQ, Si HY, Guo ZQ, Tian YC, Liu XJ, Cao WX, Zhu Y. Monitoring Leaf Equivalent Water Thickness based on Hyperspectrum in Wheat under Different Water and Nitrogen Treatments. PLOS ONE. 2014. 9(6):1-11

22.    Yao X, Ata-Ul-Karim ST, Zhu Y, Tian YC, Liu XJ, Cao WX. Development of critical nitrogen dilution curve in rice based on leaf dry matter. European Journal of Agronomy. 2014. 55: 20- 28. (SCI)

23.    Yao X, Zhao B, Tian YC, Liu XJ, Ni J, Cao WX, Zhu Y. Using leaf dry matter to quantify the critical nitrogen dilution curve for winter wheat in eastern China. Field Crops Research. 2014. 159: 33-42. (SCI)

24.    Yao X, Zhu Y, Tian YC, Liu XJ, and Cao WX. Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat. International Journal of Applied Earth Observation and Geoinformation. 2010.12(2): 89-100. (SCI)

25.    Yao X, Feng W, Zhu Y, Tian YC, and Cao WX. A non-destructive and real-time method of monitoring leaf nitrogen status in wheat. New Zealand of Agricultural Research. 2007. 50: 935-942. (SCI)

26.    Zhao B, Yao X, Tian YC, Liu XJ, Ata-UI-Karim ST, Ni J, Cao WX, Zhu Y*. New Critical Nitrogen Curve Based on Leaf Area Index for Winter Wheat. Agronomy Journal. 2014. 106(2):379-389. (SCI)

27.    Ata-Ul-Karim ST, Yao X, Liu XJ, Cao WX, Zhu Y*.Development of critical nitrogen dilution curve of Japonica rice in Yangtze River Reaches. Field Crops Research. 2013.149:149-158. (SCI)

28.    Yao XF, Yao X, Jia WQ, Tian YC, Ni J, Cao WX, Zhu Y*. Comparison and Intercalibration of Vegetation Indices from Different Sensors for Monitoring Plant Nitrogen Uptake in Wheat. Sensors.2013.13(3):3109-3130(SCI)

29.    Yao XF, Yao X, Tian YC, Ni J, Cao WX, Zhu Y*. A New Method to Determine Central Wavelength and Optimal Bandwidth for Predicting Plant Nitrogen Uptake in Wheat. Journal of Integrative Agriculture. 2013. 12(5): 101-115(SCI)

30.    Wang W, Yao X, Yao XF, Tian YC, Liu XJ, Ni J, Cao WX and Zhu Y. Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crops Research. 2012. 129: 90-98. (SCI)

31.    Wang W, Yao X, Liu XJ, Tian YC, Ni J, Cao WX and Zhu Y*. Common spectral bands and optimum vegetation indices for monitoring leaf nitrogen accumulation in rice and wheat. Journal of Integrative Agriculture. 2012.11(12): 101-108. (SCI)

32.    Tian YC, Yao X, Yang J, Cao WX, Hannaway DB, Zhu Y. 2011. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance. Field Crops Research, 120: 299-310. (SCI)

33.    Feng W, Yao X, Zhu Y, Tian YC, Cao WX. 2008. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. European Journal of Agronomy. (28): 394-404. (SCI)

34.    Feng W, Yao X, Tian YC, Cao WX, and Zhu Y. 2008. Monitoring leaf pigment status with hyperspectral remote sensing in wheat. Australian Journal of Agricultural Research. (59): 748-760. (SCI)

35.    Zhu Y, Yao X, Tian YC, Liu XJ, Cao WX. 2008. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice. International Journal of Applied Earth Observation and Geoinformation. (10): 1-10. (SCI)

36.    邱小雷,方圆,郭泰,程涛,朱艳,姚霞*。基于地基LiDAR高度指标的小麦生物量监测研究。农业机械学报,201950(10):159-166

37.    姚霞, 王雪, 黄宇, 汤守鹏, 田永超, 朱艳*, 曹卫星. 应用近红外光谱法估测小麦叶片糖氮比. 应用生态学报, 2015, 26(8): 2371-2378.

38.    姚霞 ,刘小军, 田永超, 曹卫星, 朱艳*, 张羽. 基于星载通道光谱指数与小麦冠层叶片氮素营养指标的定量关系. 应用生态学报, 2013, 24(2): 431-437.

39.    姚霞,田永超,倪军,张玉森,曹卫星,朱艳.水稻叶片色素含量近红外光谱估测模型研究.分析化学. 2012. 40(4). 589-595. (SCI)

40.    姚霞,刘小军,王薇,倪军,曹卫星,朱艳.小麦氮素无损监测仪敏感波长的最佳波段宽度研究.农业机械学报.2011422:162-167. (EI)

41.    姚霞,汤守鹏,田永超,曹卫星,朱艳.应用近红外光谱估测小麦叶片氮含量. 植物生态学报. 2011. 35 (8): 844-852.

42.    姚霞,田永超,刘小军,曹卫星,朱艳.不同算法红边位置监测小麦冠层氮素营养指标的比较.中国农业科学.201043(13)2661-2667

43.    姚霞,刘小军,王薇,田永超,曹卫星,朱艳.基于减量精细采样法探究估算小麦叶片氮积累量的最佳归一化光谱指数.应用生态学报.201021(12)3175-3182

44.    姚霞,朱艳,冯伟,田永超,曹卫星.监测小麦叶片氮积累量的新高光谱特征波段及比值植被指数.光谱学与光谱分析.200929(8)2191-2195. (SCI/EI)

45.    姚霞,朱艳,田永超,冯伟,曹卫星.小麦叶层氮含量估测的最佳高光谱参数研究.中国农业科学.200942(8)2716-2725

46.    姚霞,吴华兵,朱艳,田永超,周治国,曹卫星.棉花功能叶片色素含量与高光谱参数的相关性研究.棉花学报.200719(4)267-272

47.    冯伟,姚霞,田永超,朱艳,李映雪,曹卫星.基于高光谱遥感的小麦叶片糖氮比监测.中国农业科学.200841(6)1630-1639

48.    冯伟,姚霞,田永超,朱艳,刘小军,曹卫星.小麦籽粒蛋白质含量高光谱预测模型研究.作物学报.200733(12)1935-1942

49.    张玉森,姚霞,田永超,曹卫星,朱艳.应用近红外光谱预测水稻叶片氮含量.植物生态学报.201034(6)704-712

国家发明专利

1.        一种基于Sentinel-2红边区域多光谱信息改善小麦前期叶面积指数估算的方法. 2021101720495

2.        一种田间小麦茎蘖数提取方法.201910223270.1

3.        田间作物表型监测机器人,ZL201811273308.8

4.        一种基于三波段植被指数的小麦叶面积指数估算模型的构建方法 ZL201610803703.7

5.        一种基于连续小波分析建立小麦叶干重定量模型的方法, ZL201611116173.5

6.        一种面向田块尺度作物生长监测的遥感影像时空融合方法, ZL201811312555.4

7.        一种基于无人机多光谱影像的水稻地上部生物量估测方法, ZL201811267697.3

8.        田间作物表型监测机器人,ZL201811273308.8,

9.        Crop growth sensing apparatus and method supporting agricultural machinery variable quantity fertilization operationsUS6540039

10.    一种不同PNC水平下小麦植株含水率的监测模型和方法,2013104226074

11.    一种土壤背景干扰下小麦叶层氮含量光谱监测模型及建模方法, ZL201310227380.8

12.    一种小麦叶片等效水厚度高光谱监测方法, ZL201310382064.8

13.    一种基于三波段光谱指数估测植物氮含量的方法, ZL 201110278513.5

14.    一种基于光谱技术的小麦叶片糖氮比快速检测方法, ZL 201010543330.7

15.    一种稻麦叶片氮含量光谱监测模型建模方法,ZL 201110033113.8

16.    一种确定小麦植株吸氮量核心波段的方法,ZL201210109597.4

17.    一种基于冠层高光谱指数的小麦植株水分监测方法,201110368757.2

18.    一种不同植株氮含量水平下小麦植株含水率的监测方法,201310422607.4

19.    一种根据小麦植株吸氮量核心波长确定适宜带宽的方法

20.    基于MCMC的小麦品种特征参数估算方法, ZL2011112100035840

21.    一种田间作物生长信息无损快速检测装置及检测方法,ZL201110030031.8,

22.    机载作物氮素信息高密度无损采集方法,ZL200910034988.2

23.    便携式多通道作物叶片氮素营养指标无损监测,ZL 200710019340.9

表彰/奖励

1.        Multi-rotor wing unmanned aerial vehicle platform-based crop growth monitoring method and device. 瑞士日内瓦国际发明奖银奖(第三),2021

2.        稻麦生长指标光谱监测与定量诊断技术.国家科技进步二等奖,2015

3.        稻麦生长指标光谱监测与定量诊断技术.江苏省科技进步一等奖,2014

4.        基于模型的作物生长预测与精确管理技术.国家科技进步二等奖,2008

5.        作物管理知识模型系统的构建与应用.中国高校科技进步一等奖,2007

计算机软件著作权

1.        智慧农作管理系统AndroidV2.02018SR170058 2018

2.        基于遥感的作物生长监测诊断系统,V1.02008SR36903.2008

3.        高光谱数据分析与处理系统V1.0,2011R11L03102502011

4.        基于消费级无人机的稻麦生长监测系统【简称:稻麦生长监测系统】V1.0,2019SR0082467,2019-01-23.

5.        基于嵌入式GIS的小麦精确播种施肥智能控制软件【简称:小麦智能控制软件】V1.0,2019SR0116074,2019-01-31.

部分已毕业员工及课题名称

1.        Haider   Detection of wheat powdery mildew based on hyperspectral remote sensing at the leaf and canopy scales

2.        曹中盛  高温胁迫下小麦花后功能叶片衰老的高光谱监测诊断技术研究

3.           基于日光诱导叶绿素荧光的小麦叶片氮素营养监测研究

4.        蔡韦荻  中国近40年小麦主产区物候变化及气候响应研究

5.        韩晓旭  基于智能算法的种质资源小区边界提取算法研究

6.           基于地基激光雷达的小麦茎蘖数和穗数估测研究

7.        刘海燕  基于RGB图像和深度学习的小麦叶部主要病害识别研究

8.           基于Sentinel-1Sentinel-2影像的小麦冠层含水量估算研究

9.        汪康康  基于日光诱导叶绿素荧光监测水稻盐胁迫研究

10.       基于高时空分辨率的卫星和无人机影像的小麦生育期监测研究

11.       融合Sentinel-2Planet影像监测秸秆还田背景下的小麦LAI

12.    马春晨  基于日光诱导叶绿素荧光的水稻叶绿素含量和干旱胁迫监测研究

13.    刘红艳  基于成像高光谱的小麦白粉病监测研究

14.    翟苗苗  基于地面LiDAR结合的小麦群体结构和生长参数的反演

15.       基于时序光谱信息的小麦生育期监测研究

16.       基于地面激光雷达的小麦点云预处理技术及株高监测研究

17.    王文雁  基于高光谱的小麦白粉病监测研究

18.       基于无人机平台的小麦冠层叶片氮素营养监测研究

19.       基于近地面成像高光谱的小麦叶片生物量敏感光谱特征选择和模型构建研究

20.    周晓双  基于高光谱的稻麦叶面积指数监测研究

21.    司海洋  基于水分处理下的小麦叶片衰老高光谱监测研究

22.    庞方荣  基于无线传感器网络的农田信息自动获取技术研究

23.    郭子卿  基于植气温度指标的小麦水分无损监测研究

专业学会

1.        IEEE, Geoscience and Remote Sensing Society

2.        Union of RS and GIS in Jiangsu province, China

其他社会职务

l  ylg8099官方网站智慧农业研究院副经理

l  全国农业专业学位研究生教育指导委员农业工程与信息技术领域协作组助理秘书

l  智慧农业系主任

 

Update:2022/05/02